Computational Computational Final	Modulnummer:						
		Modulbereich: Pflicht					
/Za Go	V UE K S Prak. Proj. Σ 0 0 0 2 0 2	Kredit	punkte: 9	Turnus jährlich (SoSe)			
Formale Voraussetzungen: Keine							
Inhaltliche Voraussetzungen: -							
Vorgesehenes Semester: ab 1. Semester							
Sprache: Deutsch/Englisch							
Ziele: Die Studierenden							

- kennen Gegenstands- und Anwendungsbereiche von Computational Finance;
- beherrschen die Programmiersprache Matlab;
- verstehen das Konzept der historischen Simulation und deren Erweiterungen;
- sind in der Lage, Kapitalanlagestrategien mittels historischer Simulation und Matlab zu evaluieren;
- kennen grundlegende Konzepte der Monte-Carlo Simulation;
- können mittels Monte-Carlo Simulation und Matlab Kapitalanlagestrategien evaluieren;
- können mittels Monte-Carlo Simulation und Matlab sowohl einfache als auch exotische Finanzoptionen bewerten;
- besitzen grundlegende Fertigkeiten, auch andere Aufgabenstellungen des CF mittels Matlab zu modellieren und zu lösen.

Inhalte: I. Einführung Matlab

- Matlab-Programmiersystem
- Programmierkonzepte
- Datenimport und -export
- Grafik und Datenbanken
- II. Historische Simulation
 - Konzept der historischen Simulation
 - Beispiel: Evaluation von Verfahren der Portfolio Insurance mittels historischer Simulation
 - Erweiterungen der historischen Simulation: Bootstrapping und Zeitmatrizen
- III. Monte-Carlo Simulationen
 - Natürliche vs. Pseudo-Zufallszahlen
 - Generierung von Zufallszahlen
 - Stochastische Prozesse
 - Beispiel: Evaluation von Verfahren der Portfolio Insurance mittels Monte-Carlo Simulation
- IV. Simulationsbasierte Bewertung von Optionen
 - Financial Options und Bewertungsansätze
 - Bewertung mittels Monte-Carlo Simulation
 - Bewertung von Plain-Vanilla-Optionen
 - Bewertung exotischer Optionen

Unterlagen (Skripte, Literatur, Programme usw.):

- Poddig, Th.; Varmaz, A.; Fieberg, C.: Computational Finance: Eine Matlab, Octave und Freemat basierte Einführung, 1. Auflage, Bad Soden/Ts. (2015)
- Poddig, Th; Dichtl, H.; Petersmeier, K.: Statistik, Ökonometrie, Optimierung, 4. Auflage, Bad Soden/Ts. (2008)
- Poddig, Th.; Brinkmann, U.; Seiler, K.: Portfoliomanagement Konzepte und Strategien, 2. Auflage, Bad Soden/Ts. (2009)

Form der Prüfung:

Referat, Portfolio oder Hausarbeit

		Präsenz	28 h	
		Vor- und Nachbereitung	70 h	
	Arbeitsaufwand	Programmierung/Selbstlernstudium	102 h	
		Prüfungsvorbereitung	70 h	
		Summe	270 h	-
\vdash				

Lehrende:	Verantwortlich:
Prof. Dr. Th. Poddig	Prof. Dr. Th. Poddig