Heuristische Heuristically Op	Modulnummer:				
Bachelor Pflicht/Wahl Wahlpflicht Wahl Sonderfall		Modulbereich: Pflicht			
Anzahl der SWS	V UE K S Prak. Proj. Σ 2 2 0 0 0 0 4	Kreditpunkte: 6	Turnus i. d. R. angeboten in jedem WiSe		
Formale Voraussetzungen: -					
Inhaltliche Voraussetzungen: Technische Informatik 1					
Vorgesehenes Semester: ab 1. Semester					
Sprache: Deutsch					

Ziele:

- Optimierungsprobleme verstehen und erklären können
- Konstruktions- und Verbesserungsheuristiken unterscheiden und bewerten können
- Über tiefgehende Kenntnisse über Evolutionäre Algorithmen und Unterscheidung deren Ausprägungen verfügen
- Die Funktionsweise von Genetischen Algorithmen tiefergehend verstehen
- Metaheuristiken erklären und bewerten können
- Methoden zur Mehrzieloptimierung gegenüberstellen und anwenden können
- Die vorgestellten Algorithmen hinsichtlich ihrer Qualitäts- und Laufzeitunterschiede analysieren können
- Eine themenspezifischen Programmieraufgabe implementieren und präsentieren können

Inhalte:

- Darstellung des Suchraumes für Optimierungsprobleme
- Optimalitätskriterien für Optimierungsprobleme
- Qualitätsabschätzung einer Lösung bei unbekanntem Optimum
- Konstruktions- und Verbesserungsheuristiken zum Handlungsreisendenproblem und zur Graphpartitionierung
- Mutations- Selektionsverfahren
- Simulated Annealing
- Evolutionäre Algorithmen
- Theoretische Grenzen Evolutionärer Algorithmen
- Theoretische Grundlagen der Mehrzieloptimierung
- Tabusuche
- Ameisenkolonien
- Parallelisierung in der Optimierung

Unterlagen (Skripte, Literatur, Programme usw.):

- Karsten Weicker: Evolutionäre Algorithmen, 2007
- David Goldberg: Evolutionary Algorithms, 1989
- John Koza: Genetic Programming, 1992
- Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms, 2001
- Corne, Dorigo, Glover: New Ideas in Optimization, 1999
- Originalarbeiten aus IEEE Transactions on Evolutionary Algorithms

Form der Prüfung: i.d.R. Bearbeitung von Übungsaufgaben, Programmieraufgabe und Fachgespräch oder mündliche Prüfung						
Arbeitsaufwand	Präsenz Übungsbetrieb/Prüfungsvorbereitung Summe	56 124 180	h			
Lehrende: Dr. N. Drechsler			Verantwortlich: Dr. N. Drechsler			