Modulbezeichnung	Mathematische Grundlagen 2
Modulverantwortliche(r)	Prof. Dr. C. Lutz
Modulart	Pflicht/Wahl ⊠ Wahlpflicht □
Spezialisierungsbereich	
Dauer des Moduls	1 Semester
Kreditpunkte	8 CP
Arbeitsaufwand	Berechnung des Workloads Präsenz Übungsbetrieb/Prüfungsvorbereitung Summe 240 h
Turnus des Moduls	angeboten in jedem SoSe
Voraussetzung für die Teilnahme	Keine □ Folgende Inhaltliche Voraussetzungen: Inhalte von Mathematische Grundlagen 1
Lehr- und Lernformen	Seminar □ Vorlesung ⊠ Tutorium ⊠ Praktikum □ Projekt □
Lernziele	 Fähig sein, mathematische Notation zu verstehen und zu verwenden. Im Stande sein, über mathematische Gegenstände und Sachverhalte zu kommunizieren. Logisches Denken und Abstraktionsfähigkeit trainiert haben. Mit den für die Informatik wichtigen Grundlagen der linearen Algebra, Differentialrechnung und Integralrechnung vertraut sein, die elementaren Resultate aus diesen Gebieten kennen und sie anwenden können. In der Lage sein, einfache Beweise selbständig durchzuführen.

	I. Lineare Algebra
	 Vektorräume: Koordinatensystem, Geraden in der Ebene und im Raum, Ebenen im Raum, Untervektorräume, Basisbegriff, Matrizen, linearer Abbildungen mit geometrische Deutung
	 Skalarprodukt: Einführung und Definition, Geometrische Interpretation (Winkel, Orthogonalprojektion und Abstand), Anwendung (Gleichung für Ebenen und Geraden, Abstandsberechnung)
	3. Inhaltsberechnung: Fläche von Parallelogrammen, Volumen von Parallelepipeden, Vektorprodukt
	4. Lineare Gleichungssysteme: Einführung, Struktur der Lösungsmenge, Lösungsverfahren
	5. Matrizenmultiplikation: Rechenregeln, invertierbare Matrizen, Basiswechsel
	6. Determinanten: Berechnung durch Spaltenumformungen, Cramersche Regel
	II. Differentialrechnung
	1. Die Ableitung: Definition und Interpretation, lineare Approximation, Differentiationsregeln
	2. Exkurs: Grenzwertbegriff, reelle Funktionen und Stetigkeit
	3. Kurvendiskussion: lokale Extrema, Mittelwertsatz, Vorzeichen der Ableitung
Lerninhalte	4. Exkurs: komplexe Zahlen
	5. Trigonometrische Funktionen: Sinus, Cosinus, Tangens und Arcustangens
	Logarithmus und Exponentialfunktion: natürlicher Logarithmus, Exponentialfunktion, allgemeine Potenz
	III. Integralrechnung
	Treppenfunktionen, Konstruktion des Integrals, Hauptsatz der Infinitesimalrechnung
	2. Exkurs: Suprenum und Infinum
	3. Integrationstechniken: Substitution, partielle Integration, Partialbruch-Zerlegung
	 Anwendungen des Integrals: Fläche von Normalbereichen, Volumen von Normalkörpern, Bogenlänge, uneigentliche Integrale
	IV. Numerische Aspekte
	Approximationsprobleme (bei Verwendung von Rechnern)
	2. Probleme der Fehlerfortpflanzung
Prüfungsformen	i. d. R. Bearbeitung von Übungsaufgaben und Klausur
Literatur	W.Doerfler, W.Peschek: Einführung in die Mathematik für Informatiker. Hanser Verlag 1988
	Ch.Meinel,M.Mundhenk: Mathematische Grundlagen der Informatik, 2.Auflage, Teubner Verlag 2002.
	 R.L.Graham, D.E.Knuth, O.Patashnik: Concrete Mathematics. A Foundation for Computer Science. Addison-Wesley Publ. Co. 1988