Mathematische Grundlagen 2: Lineare Algebra und	Modulnummer:						
Mathematics 2		BA-600.02					
Bachelor	Zugeordnet zu Masterprofil						
Pflicht/Wahl ⊠	Sicherheit und Qualität (SQ)						
Wahl □ Basis □ Ergänzung □ Sonderfall □	KI, Kognition, Robotik (KIKR)						
Sonderiali	Digitale Medien und Interaktion (DMI)						
Modulbereich: Mathematik und Theoretische Informatik							
Modulteilbereich: 600 Mathematik							
Anzahl der V UE K S Prak. Proj. Σ	14 19 11 0	Turnus					
SWS 4 2 0 0 0 0 6	Kreditpunkte: 8	angeboten in jedem SoSe					
Formale Voraussetzungen: -							
Inhaltliche Voraussetzungen: Inhalte von Mathematische Grun	ndlagen 1						
Vorgesehenes Semester: 4. Semester							
Sprache: Deutsch							
Ziele:							
• Fähig sein, mathematische Notation zu verstehen und zu verwenden.							
 Im Stande sein, über mathematische Gegenstände und Sachverhalte zu kommunizieren. 							
 Logisches Denken und Abstraktionsfähigkeit trainiert ha 	aben.						
 Mit den für die Informatik wichtigen Grundlagen der linearen Algebra, Differentialrechnung und Integralrechnung vertraut sein, die elementaren Resultate aus diesen Gebieten kennen und sie anwenden können. 							
In der Lage sein, einfache Beweise selbständig durchzu	uführen.						

Inhalte: I. Lineare Algebra

- 1. Vektorräume: Koordinatensystem, Geraden in der Ebene und im Raum, Ebenen im Raum, Untervektorräume, Basisbegriff, Matrizen, linearer Abbildungen mit geometrische Deutung
- 2. Skalarprodukt: Einführung und Definition, Geometrische Interpretation (Winkel, Orthogonalprojektion und Abstand), Anwendung (Gleichung für Ebenen und Geraden, Abstandsberechnung)
- 3. Inhaltsberechnung: Fläche von Parallelogrammen, Volumen von Parallelepipeden, Vektorprodukt
- 4. Lineare Gleichungssysteme: Einführung, Struktur der Lösungsmenge, Lösungsverfahren
- 5. Matrizenmultiplikation: Rechenregeln, invertierbare Matrizen, Basiswechsel
- 6. Determinanten: Berechnung durch Spaltenumformungen, Cramersche Regel

II. Differentialrechnung

- 1. Die Ableitung: Definition und Interpretation, lineare Approximation, Differentiationsregeln
- 2. Exkurs: Grenzwertbegriff, reelle Funktionen und Stetigkeit
- 3. Kurvendiskussion: lokale Extrema, Mittelwertsatz, Vorzeichen der Ableitung
- 4. Exkurs: komplexe Zahlen
- 5. Trigonometrische Funktionen: Sinus, Cosinus, Tangens und Arcustangens
- 6. Logarithmus und Exponentialfunktion: natürlicher Logarithmus, Exponentialfunktion, allgemeine Potenz

III. Integralrechnung

- 1. Treppenfunktionen, Konstruktion des Integrals, Hauptsatz der Infinitesimalrechnung
- 2. Exkurs: Suprenum und Infinum
- 3. Integrationstechniken: Substitution, partielle Integration, Partialbruch-Zerlegung
- 4. Anwendungen des Integrals: Fläche von Normalbereichen, Volumen von Normalkörpern, Bogenlänge, uneigentliche Integrale

IV. Numerische Aspekte

- 1. Approximationsprobleme (bei Verwendung von Rechnern)
- 2. Probleme der Fehlerfortpflanzung

Unterlagen (Skripte, Literatur, Programme usw.):

- W.Doerfler, W.Peschek: Einführung in die Mathematik für Informatiker. Hanser Verlag 1988
- Ch.Meinel, M.Mundhenk: Mathematische Grundlagen der Informatik, 2. Auflage, Teubner Verlag 2002.
- R.L.Graham, D.E.Knuth, O.Patashnik: Concrete Mathematics. A Foundation for Computer Science. Addison-Wesley Publ. Co. 1988

Form der Prüfung:

i. d. R. Bearbeitung von Übungsaufgaben und Klausur

	Präsenz	84	h	
Arbeitsaufwand	Übungsbetrieb/Prüfungsvorbereitung		h	
	Summe	240	h	
Lehrende:			Verantwortlich:	
SG Mathematik			Prof. Dr. C. Lutz	